Question part

Rest api
o Basic & Conceptual Questions

What are the different ways to build APIs in
Drupal 10?

What is the difference between REST,
JSON:API, and GraphQL in Drupal?

Which core modules are required to enable
REST in Drupal 10?

How do you enable REST for a specific entity
type (e.g., node)?

What is serialization in Drupal? Which
modules handle it?

What is the role of the Serializer and
Normalizer in Drupal REST?

o Configuration & Setup



How do you configure REST resources in
Drupal 10?

How do you enable authentication methods
for REST (Basic Auth, Cookie, OAuth)?

What is the difference between Basic
Authentication and Cookie-based
Authentication in Drupal?

How do you test REST APIs in Drupal (tools
and process)?

How do you expose custom fields in REST
responses?

How do you restrict access to REST
endpoints based on roles?

o JSON:API Specific (Very Important in
Drupal 10)

Why is JSON:API preferred in Drupal 10?
How do you filter content using JSON:API?

How do you include related entities in a



JSON:API response?

How do you sort and paginate results in
JSON:API?

How do you disable a specific resource in
JSON:API?

¢ Custom REST Resource Development

How do you create a custom REST resource
in Drupal 10?

What annotation is used to define a REST
resource plugin?

Which class do you extend while creating a
custom REST resource?

How do you define GET, POST, PATCH,
DELETE methods in a custom REST
resource?

How do you handle validation inside a
custom REST endpoint?

How do you return custom response codes



(200, 201, 403, 404)?

o Security & Performance

How do you secure REST APIs in Drupal?
How do you implement CSRF protection?
How does caching work in Drupal REST?

How do cache contexts and cache tags affect
APl responses?

How do you disable caching for a specific
REST response?

¢ Practical / Scenario-Based

A mobile app needs to create content in
Drupal. How would you implement it?

How would you version your API in Drupal?

How do you handle file/image uploads via
REST?

How do you debug REST APl issues in



Drupal?

What common REST errors have you faced
and how did you fix them?

Answer part
o Basic & Conceptual Questions

Drupal 10 supports REST using core REST
module, JSON:API module, and contributed
GraphQL module.

REST is configurable and flexible, JSON:API
iIs standards-compliant and auto-exposes
entities, and GraphQL allows client-driven
queries.

The required core modules are REST,
Serialization, and HAL (if using HAL format).



REST is enabled per entity and method under
/admin/config/services/rest.

Serialization converts Drupal objects into
formats like JSON or XML using the
Serialization module.

Serializer converts data formats while
Normalizers transform Drupal objects into
structured arrays for serialization.

o Configuration & Setup

REST resources are configured from the
REST Ul where methods, formats, and
authentication providers are enabled.

Authentication methods are enabled by
activating modules like Basic Auth, OAuth, or
using Cookie authentication for logged-in
users.

Basic Auth uses username and password per
request while Cookie authentication works
for authenticated session users.

REST APIs are tested using tools like



Postman or cURL by sending HTTP requests
to endpoints.

Custom fields are exposed automatically if
attached to the entity and proper permissions
are granted.

Access is restricted using Drupal
permissions assigned to specific roles.

o JSON:API Specific

JSON:API is preferred because it is included
in core and requires zero configuration to
expose entities.

Filtering in JSON:API is done using query
parameters like ?filter[field_name]=value.

Related entities are included using the
include query parameter.

Sorting and pagination are handled using sort
and page[limit] query parameters.

Specific resources can be disabled using the
JSON:API Extras module.



o Custom REST Resource Development

A custom REST resource is created by
defining a plugin inside the module's
src/Plugin/rest/resource directory.

The @RestResource annotation is used to
define a custom REST resource plugin.

The class extends ResourceBase while
implementing required methods.

HTTP methods are defined by implementing
functions like get(), post(), patch(), and
delete().

Validation is handled inside the method logic
or using Drupal’s validation services before
processing data.

Custom response codes are returned using
ResourceResponse with the desired HTTP
status code.

o Security & Performance



REST APIs are secured using proper
authentication, permissions, HTTPS, and
CSRF protection.

CSREF protection is implemented using
Drupal’s CSRF token service for unsafe HTTP
methods.

Drupal REST responses are cacheable using
cache metadata like tags, contexts, and
max-age.

Cache contexts vary responses based on
request conditions while cache tags
invalidate related cached data.

Caching can be disabled by setting max-age
to 0 in the response object.

¢ Practical / Scenario-Based
| would enable POST on the node resource,
configure authentication, and allow required

permissions for the mobile app role.

API versioning can be handled using custom
routes or URL prefixes like /api/v1/.



File uploads are handled using the file entity
REST endpoint with multipart/form-data
requests.

REST issues are debugged using logs,
watchdog, browser network tab, and tools
like Postman.

Common REST errors include 403 permission
iIssues and 415 unsupported media type,
which are resolved by fixing permissions or
headers.




