Q: What is a hook in Drupal? How does it work internally?

A: A hook is a procedural callback function that allows modules to alter or extend core
behavior, internally invoked via module_handler()->invokeAll() which calls all
implementations following hook naming conventions.

Q: Where are hooks implemented in Drupal 10?

A: Hooks are implemented in .module files of custom or contributed modules following
hook_name() naming conventions.

Q: What is the difference between procedural hooks and event subscribers in Drupal 107?

A: Procedural hooks are legacy function-based callbacks discovered automatically, while
event subscribers are OOP-based Symfony EventDispatcher implementations registered
as services.

Q: Why are many traditional hooks being replaced by events in modern Drupal?

A: Because events provide better OOP architecture, dependency injection, testability, and
alignment with Symfony standards.

Q: What is hook discovery in Drupal?

A: Hook discovery is Drupal's runtime scanning of enabled modules to detect functions
matching hook patterns and register them in the module handler cache.

Q: Explain hook_form_alter(). When would you use it?

A: hook_form_alter() modifies any form before rendering and is used when altering form
structure, validation, or submission logic globally.

Q: Difference between hook_form_alter(), hook_form_FORM_ID_alter(),
hook_form_BASE_FORM_ID_alter()?

A: hook_form_alter() alters all forms, hook _form_FORM_ID_alter() targets a specific form
ID, and hook_form_BASE_FORM _ID_alter() alters all forms sharing the same base form.

Q: Explain hook_preprocess HOOK() with example.

A: hook_preprocess_ HOOK() alters template variables before rendering, e.g.,
hook_preprocess_node() to add a custom variable to node templates.

Q: What is hook_theme() used for?

A: hook_theme() registers theme hooks, templates, and render element definitions with
Drupal’s theme system.

Q: Explain hook_help() and where it appears.

A: hook_help() provides contextual help text displayed on module help pages under
/admin/help.

Q: What is hook_permission() used for?

A: hook_permission() defines custom permissions that can be assigned to roles in the user
permissions Ul.

Q: What does hook_page_attachments() do?

A: hook_page_attachments() attaches libraries, metadata, or assets to the page render
array globally.

Q: What is hook_entity presave() and when would you use it?

A: hook_entity presave() executes before an entity is saved to modify values
programmatically.

Q: Explain hook_entity insert() and hook_entity update().

A: hook_entity_insert() runs after a new entity is created while hook_entity update() runs
after an existing entity is updated.

Q: How would you alter a node form to add custom validation?

A: Use hook form_FORM_ID_alter() to add a custom validation handler via
$form['#validate'][] callback.

Q: How do you attach a JS/CSS library conditionally using hooks?

A: Use hook page_attachments() or hook form_alter() and attach library via
$build['#attached['library'][] based on condition.

Q: How would you modify a Views query using hooks?
A: Implement hook_views_query_alter() to alter the query object before execution.

Q: Explain hook_views_query_alter().

A: hook_views_query_alter() allows developers to programmatically modify SQL query
conditions, joins, or filters in a View.

Q: What is hook_theme_suggestions HOOK alter() used for?

A: It alters template suggestion arrays to control which Twig template file is used for
rendering.

Q: How do you alter route definitions in Drupal 107
A: Use hook_route_alter() to modify existing routes or alter routing defaults.

Q: How do you alter existing services in Drupal?

A: Override services in your module’s services.yml using service decoration or altering
service definitions via ServiceProvider class.

Q: What is hook_cron() and how is it triggered?

A: hook_cron() executes scheduled tasks and is triggered by Drupal cron runs via system
cron or server scheduler.

Q: Which hooks are deprecated in Drupal 10 compared to Drupal 7?

A: Many menu, block, and page-related hooks like hook _menu() are removed and
replaced by routing, plugins, and services.

Q: When should you use an Event Subscriber instead of a hook?

A: Use an Event Subscriber when reacting to Symfony kernel or entity events requiring
dependency injection and OOP design.

Q: How do hooks interact with Symfony request lifecycle?

A: Hooks execute during Drupal bootstrap and rendering phases while Symfony events
manage request-response lifecycle stages.

Q: What are cache implications when using preprocess hooks?

A: Preprocess hooks must respect cache contexts, tags, and max-age to prevent incorrect
caching of dynamic data.

Q: How do you debug whether a hook is firing?

A: Use \Drupal::logger(), Xdebug breakpoints, or temporary die()/dump() statements to
verify execution.

Q: In which file do you write hooks in a custom module?
A: Hooks are written inside the custom_module.module file.

Q: Can hooks be implemented inside a class in Drupal 10?

A: No, hooks must be procedural functions in Drupal 10, but Drupal 11 introduces limited
class-based hook support.

